Sulfated, low-molecular-weight lignins are potent inhibitorsof plasmin, in addition to thrombin and factor Xa: Novel opportunity for controlling complex pathologies.

نویسندگان

  • Brian L Henry
  • May Abdel Aziz
  • Qibing Zhou
  • Umesh R Desai
چکیده

Recently we prepared sulfated, low-molecular-weight lignins (LMWLs) to mimic the biological activities of heparin and heparan sulfate. Chemo-enzymatically prepared sulfated LMWLs represent a library of diverse non-sugar, aromatic molecules with structures radically different from the heparins, and have been found to potently inhibit thrombin and factor Xa. To assess their effect on the fibrinolytic system, we studied the interaction of LMWLs with human plasmin. Enzyme inhibition studies indicate that the three sulfated LMWLs studied inhibit plasmin with IC50 values in the range of 0.24 and 1.3 mM, which are marginally affected in the presence of antithrombin. Similarly, plasmin degradation of polymeric fibrin is also inhibited by sulfated LMWLs. Michaelis-Menten kinetic studies indicate that maximal velocity of hydrolysis of chromogenic substrates decreases nearly 70% in the presence of LMWLs, while the effect on Michaelis constant is dependent on the nature of the substrate. Competitive binding studies indicate that the sulfated LMWLs compete with full-length heparin. Comparison with thrombin-heparin crystal structure identifies an anionic region on plasmin as a plausible sulfated LMWL binding site. Overall, the chemo-enzymatic origin coupled with coagulation and fibrinolysis inhibition properties of sulfated LMWLs present novel opportunities for designing new pharmaceutical agents that regulate complex pathologies in which both systems are known to play important roles such as disseminated intravascular coagulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel chemo-enzymatic oligomers of cinnamic acids as direct and indirect inhibitors of coagulation proteinases.

Thrombin and factor Xa, two important procoagulant enzymes, have been prime targets for regulation of clotting through the direct and indirect mechanism of inhibition. Our efforts on exploiting the indirect mechanism led us to study a carboxylic acid-based scaffold, which displayed major acceleration in the inhibition of these enzymes [J. Med. Chem.2005, 48, 1269, 5360]. This work advances the ...

متن کامل

Discovery of a novel, potent, and specific family of factor Xa inhibitors via combinatorial chemistry.

A series of low molecular weight peptide inhibitors of factor Xa, unrelated to any previously described, was identified by screening a combinatorial peptide library composed of L-amino acids. The minimal inhibitory sequence is a tripeptide, L-tyrosinyl-L-isoleucyl-L-arginyl, which competitively inhibits the hydrolysis of small chromogenic substrates by factor Xa but binds in an orientation whic...

متن کامل

A novel allosteric pathway of thrombin inhibition: Exosite II mediated potent inhibition of thrombin by chemo-enzymatic, sulfated dehydropolymers of 4-hydroxycinnamic acids.

Thrombin and factor Xa, two important pro-coagulant proteinases, can be regulated through direct and indirect inhibition mechanisms. Recently, we designed sulfated dehydropolymers (DHPs) of 4-hydroxycinnamic acids that displayed interesting anticoagulant properties (Monien, B. H., Henry, B. L., Raghuraman, A., Hindle, M., and Desai, U. R. (2006) Bioorg. Med. Chem. 14, 7988-7998). To better unde...

متن کامل

Plasmin regulation through allosteric, sulfated, small molecules.

Plasmin, a key serine protease, plays a major role in clot lysis and extracellular matrix remodeling. Heparin, a natural polydisperse sulfated glycosaminoglycan, is known to allosterically modulate plasmin activity. No small allosteric inhibitor of plasmin has been discovered to date. We screened an in-house library of 55 sulfated, small glycosaminoglycan mimetics based on nine distinct scaffol...

متن کامل

Preparation and pharmacological evaluation of novel glycoprotein (Gp) IIb/IIIa antagonists. 1. The selection of naphthalene derivatives.

The synthesis and design using molecular modeling techniques for non-peptide, low molecular weight novel fibrinogen receptor (glycoprotein IIb/IIIa: Gp IIb/IIIa) antagonists, is reported. We used a highly potent serine protease inhibitor, Nafamostat, having an amidinonaphthyl unit as the starting compound. The compounds 4-(6-amidino-2-naphthylaminocarbonyl)phenoxyacetic acid (5a) and 4-(6-amidi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Thrombosis and haemostasis

دوره 103 3  شماره 

صفحات  -

تاریخ انتشار 2010